Ambipolar acceleration of ions in a magnetic nozzle
نویسندگان
چکیده
This paper describes a magnetic nozzle with a magnetic mirror configuration that transforms a collisionless subsonic plasma flow into a supersonic jet expanding into the vacuum. The nozzle converts electron thermal energy into the ion kinetic energy via an ambipolar electric field. The ambipolar potential in the expanding plume involves a time-dependent rarefaction wave. Travelling through the rarefaction wave, electrons lose some kinetic energy and can become trapped downstream from the mirror throat. This work presents a rigorous adiabatic description of the trapped electron population. It examines the impact of the adiabatic cooling of the trapped electrons on the ambipolar potential and the ensuing ion acceleration. The problem is formulated for an arbitrary incoming electron distribution and then a “water-bag” electron distribution is used to obtain a closed-form analytical solution. © 2008 American Institute of Physics. #DOI: 10.1063/1.2907786$
منابع مشابه
Quasi-one-dimensional particle-in-cell simulation of magnetic nozzles
A method for the quasi-one-dimensional simulation of magnetic nozzles was developed and simulations of a magnetic nozzle were performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration were investigated. The density variation only weakly affects ion acceleration. Magnetic field forces acting on the electrons were found to be respons...
متن کاملAmbipolar filamentation of turbulent magnetic fields: a numerical simulation
We present the results of a 2-D, two fluid (ions and neutrals) simulation of the ambipolar filamentation process, in which a magnetized, weakly ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, so that the initial ionization inhomo...
متن کاملAmbipolar Filamentation of Turbulent Magnetic Fields
We present the results of a 2-D, two fluid (ions and neutrals) simulation of the ambipolar filamentation process, in which a magnetized, weakly ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, so that the initial ionization inhomo...
متن کاملMagnetic Transport On The Solar Atmosphere By Turbulent Ambipolar Diffusion
The lower solar atmosphere consists of partially ionized turbulent plasmas harbouring velocity field, magnetic field and current density fluctuations. The correlations amongst these small scale fluctuations give rise to large scale flows and magnetic fields which decisively affect all transport processes. The three fluid system consisting of electrons, ions and neutral particles supports nonide...
متن کاملThe Inability of Ambipolar Diffusion to set a Characteristic Mass Scale in Molecular Clouds
We investigate the question of whether ambipolar diffusion (ion-neutral drift) determines the smallest length and mass scale on which structure forms in a turbulent molecular cloud. We simulate magnetized turbulence in a mostly neutral, uniformly driven, turbulent medium, using a three-dimensional, two-fluid, magnetohydrodynamics (MHD) code modified from Zeus-MP. We find that substantial struct...
متن کامل